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Abstract: We consider the EOQ model with an opportunity cost of capital, i.e. an amount x invested now will yield (1+i)x at 

the beginning of the next period. Here i is the interest rate. Given a cost stream i.e. a stream of costs incurred over time, the Net 

Present Value (NPV) is used to decide the total cost of the cost stream. This total cost takes into account the opportunity cost of 

capital. The Discounted Average Cost changes the NPV, which is a total, into a cost rate per unit time. The discounted average 

cost is a cost rate. If we incur this cost rate for the entire period of time under consideration, it will lead to the same NPV as the 

actual NPV of the cost stream. The discounted average cost under continuous compounding is thus an alternative objective to 

the standard objective of average cost, which is also a cost rate. We minimize the discounted average cost under continuous 

compounding for two EOQ models, one with a regular product and the other with a perishable product. Perishable products 

include food, medicines, certain chemicals and blood in blood banks. In the EOQ model with a perishable product, inventory 

decays at a constant rate over time. We find the optimal order quantity for the two models while minimizing discounted 

average cost under continuous compounding. 

Keywords: Inventory, EOQ Model, Discounted Average Cost, Continuous Compounding, Perishable Product 

 

1. Introduction 

The EOQ model is a very widely used and studied 

inventory model. In the EOQ model we find the order 

quantity which minimizes average cost. In this paper we 

consider the EOQ model but with an alternative objective. 

This objective instead of being the average cost is the 

discounted average cost under continuous compounding. So 

we find the order quantity in the EOQ model that minimizes 

the discounted average cost under continuous compounding. 

Background material on continuous compounding and on 

the discounted average cost is presented in Section 2. We 

briefly discuss it here. The average cost is an important 

objective, but it has one drawback. It ignores the time value 

of money. There is an opportunity cost of capital, i.e. costs 

incurred now are more expensive than costs incurred later. 

Given a cost stream i.e. a stream of costs incurred over time, 

the Net Present Value (NPV) is used to decide the total cost 

of the cost stream. This total cost takes into account the 

opportunity cost of capital. 

The Discounted Average Cost changes the NPV which is a 

total, into a cost rate per unit time. The discounted average 

cost (of a cost stream) over a specific time interval, is the 

cost rate that if incurred continuously over the interval, 

results in the same NPV as the actual cost stream. The NPV 

is like a total. The discounted average cost is a cost rate. If 

we incur this cost rate for the entire period of time under 

consideration, it will lead to the same NPV as the actual NPV 

of the cost stream. Detailed discussion on the calculation of 

the discounted average cost is presented in Section 2. 

There are two main advantages to considering the 

discounted average cost as an objective for minimization. 

Firstly, it takes into account the time value of money. 

Secondly, it is directly comparable to average cost, which is 
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the standard objective that is used. According to Porteus [1], 

`the discounted average cost can be viewed as an adjustment 

to the average cost that takes into account the timing of 

expenditures’. If the bulk of the expenditures occur early in 

the cost stream, the discounted average cost would go up. 

Because of the time value of money an early expenditure is 

more costly than a later expenditure of the same amount. 

Similarly, if the bulk of expenditures occur later in the cost 

stream, the discounted average cost would go down. 

In this paper, we minimize the discounted average cost 

under continuous compounding in the EOQ model. 

Continuous compounding is discussed in Section 2. We also 

consider the EOQ model with a perishable product. For this 

model also, we minimize the discounted average cost under 

continuous compounding. 

For a good discussion of the EOQ model, refer Nahmias 

[2]. The discussion in Section 2 on Discounted Average Cost 

and Continuous Compounding is based on Porteus [1], 

Appendix C. The EOQ model with a perishable product is 

discussed in Section 4 and follows the analysis done in 

Zipkin [3]. This analysis then becomes the basis for finding 

the optimal order quantity by minimizing the discounted 

average cost under continuous compounding for the EOQ 

model with a perishable product. 

Recent work on the EOQ model includes the paper by 

Ouyang et al [4]. The authors consider an EOQ model for 

deteriorating items under trade credits. In the EOQ model it 

is assumed that the supplier is paid immediately after product 

is received. However, in reality, suppliers may offer a 

permissible delay as well as a cash discount. Given, this the 

authors find the optimal policy of the customer to minimize 

cost. 

In other recent work, Tripathy et al [5] consider an EOQ 

model with process reliability considerations. In the EOQ 

model it is assumed that the items produced are of perfect 

quality. However, in reality, product quality is not perfect. 

The authors consider an EOQ model with an imperfect 

production process in which the unit production cost is 

directly related to process reliability. 

Eroglu and Ozdemir [6] consider an EOQ model where 

each lot contains some defective items and shortages are 

backordered. It is assumed that the entire lot is screened to 

separate good and defective items. The effect of percentage 

defective in the lot on the optimal solution is studied and 

numerical examples are provided. 

In Giri et al [7] a single item EOQ model for deteriorating 

items with a ramp-type demand and Weibull deterioration 

distribution is considered. Shortages in inventory are allowed 

and backlogged completely. A numerical solution of the 

model is obtained, and the sensitivity of the parameters 

involved in the model is also examined. Salameh and Yaber 

[8] consider an EOQ model for items of imperfect quality. 

This paper extends the traditional EOQ model by accounting 

for imperfect quality items when using the EOQ formulae. 

This paper also considers the issue that poor-quality items are 

sold as a single batch by the end of the full screening process. 

A mathematical model is developed and numerical examples 

are provided to illustrate the solution procedure. 

Ouyang et al [9] consider the following model. To attract 

more sales suppliers frequently offer a permissible delay in 

payments if the retailer orders more than or equal to a 

predetermined quantity. The authors consider an EOQ model 

with permissible delay in payment with (1) the retailer’s 

selling price per unit is significantly higher than unit 

purchase price, (2) the interest rate charged by a bank is not 

necessarily higher than the retailer’s investment return rate, 

(3) many items such as fruits and vegetables deteriorate 

continuously, and (4) the supplier may offer a partial 

permissible delay in payments even if the order quantity is 

less than a predetermined amount. The authors establish the 

mathematical model, and derive several theoretical results to 

determine the optimal solution under various situations. 

Chua et al [10] also consider an inventory model of 

deteriorating items under permissible delay in payments. The 

main purpose of this paper is to investigate the properties of 

the convexity of the cost function of the inventory model of 

the deteriorating items under a permissible delay in 

payments. The paper shows that the cost per unit time is 

piecewise-convex and a solution procedure is developed. 

This paper is organized as follows. In Section 2, we 

present background on continuous compounding and 

discounted average cost. In Section 3 we minimize the 

discounted average cost under continuous compounding in 

the EOQ model. The standard EOQ Model for a perishable 

product is considered in Section 4. In Section 5 we consider 

the EOQ model for a perishable product with discounted 

average cost under continuous compounding. In Section 6 we 

discuss a numerical example for the EOQ model with a 

perishable product. Finally Conclusions are presented in 

Section 7. 

2. Background on Continuous 

Compounding and Discounted 

Average Cost 

The background material in this section is based on 

Porteus [1], Appendix C, Discounted Average Value. 

Consider an n period planning horizon. A stream of costs 

ct, t=1, 2,..., n is incurred at the beginning of each period. In n 

is small or the periods are short, we can just add the costs to 

find the total cost. However, in many cases, we have to 

consider the time value of money. That is, a dollar invested 

now is worth more than a dollar invested in the future. This is 

because instead of investing the dollar, we can put it in a 

bank account. The $1 dollar will become $(1+i) at the 

beginning of the second period. Here i is the interest earned 

on the principal deposited, i.e. $1. 

So we need to keep aside only α=1/(1+i) dollars at the 

beginning of the first period to pay $1 at the beginning of the 

second period. Similarly, we need to keep aside only αt 

dollars today to pay $1, t periods from now. We can therefore 

consider the time value of money to find the Net Present 

Value (NPV) of the stream of costs, ct, t=1,2,...,n. If vNPV 
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denotes the NPV of the cost stream, 

vNPV = ∑t=1
n αt-1 ct 

If the interest rate i per period is known and if costs occur 

at the beginning or end of discrete periods, then the NPV can 

be calculated as above. However if costs occur in the middle 

of the period or if periods are of different lengths or some 

costs are incurred continuously over time, then it is difficult 

to calculate the NPV. In such cases, Continuous 

Compounding can be a big help. 

Consider an annual interest rate i. If interest is 

compounded once a year, $1 invested at the beginning of the 

year will yield $(1+i) at the beginning of the second year. 

If interest is compounded twice a year (every 6 months) $1 

invested at the beginning of the year would yield $(1+i/2)2 at 

the beginning of year 2. In the same way if interest is 

compounded m times a year, $1 invested at the beginning of 

the year would yield $(1+i/m)m at the beginning of year 2. If 

instead of a year we consider a time period [0,t], over which 

interest is compounded m times Then $1 invested at the 

beginning of the time period would yield $(1+it/m)m at the 

end of the time period. 

Continuous Compounding results when m goes to infinity. 

We use the result, 

limm→∞ (1+it/m)m = eit 

Then, under continuous compounding, $1 invested at the 

beginning of the time period [0,t] would yield eit dollars at 

the end of the time period. 

The following Lemma follows Lemma C.1 page 263 of 

Porteus [1]. 

Lemma 1: 

Suppose that interest is compounded continuously at the 

rate of i per unit time. 

(a) The present value (at time 0) of x dollars received at 

time t, is xe-it 

(b) The present value ( at time 0) of incurring costs at a 

continuous rate of x dollars per unit time over the time 

interval [0,t] is x(1 - e-it )/i 

Proof: 

Part (a) follows from the discussion above. 

For Part (b), we have 

vNPV = ʃτ=0
t x e-iτdτ 

= x(1 - e-it)/i 

Porteus [1] defines the Discounted Average Value (DAV) 

of a cost stream over a specific time interval, as the cost rate 

that if incurred continuously over the interval, yields the 

same NPV as the actual cost stream. 

According to Porteus [1], `The DAV simply reexpresses 

the NPV, which is a total, into a rate of expenditures per unit 

time. That is, the DAV rescales the net present value into a 

uniform cost rate’’. 

One advantage of the DAV is that it is directly comparable 

to Average Cost, as we will see in the example below. In 

what follows, we would be using the terms `DAV’ and 

`discounted average cost’ interchangeably, as they are the 

same. We next have the following Lemma. (Theorem C.1 

Porteus [1]) 

Lemma 2: 

Given, vNPV the NPV (as of time 0) of a given cost stream, 

the equivalent DAV over [0,t] is given by 

vDAV = ivNPV/(1 - e-it ) 

Proof: 

Suppose costs are incurred at the rate of vDAV over [0,t]. 

Then by Lemma 1(b), the resulting NPV is 

vNPV = vDAV (1 - e-it )/i 

Rearranging the expression above, the result of the Lemma 

follows. 

To illustrate the calculation of the Discounted Average 

Cost, vDAV, and see that it is comparable to average cost, we 

use the example below from Porteus [1]. 

Example: 

Suppose that interest is compounded continuously at the 

rate of 2% per month. We face the following 3 alternative 

cost streams and costs are incurred at the beginning of each 

month. 

Table 1. The Average Cost and DAV for 3 alternative cost streams. 

Month Alternative 1 Alternative 2 Alternative 3 

1 1000 200 0 

2 1000 1000 200 

3 1000 1809 2812 

Total 3000 3009 3012 

Average Cost 1000 1003 1004 

DAV 1009.9 1002.1 995.1 

Because we are using continuous compounding the effective 

discount rate is α = e-i (Here t=1) = e-0.02 =0.9802. That is, we 

need to keep aside only α= e-i dollars at the beginning of the first 

period to pay $1 at the beginning of the second period. 

The discount factor of the costs in the second and third period 

are respectively, α2 = e-2i =0.9607 and α3 = e-3i = 0.9417 

The NPVs as of time 0, for the 3 alternatives are follows: 

vNPV 

vNPV (1) = 1000* e-i + 1000* e-2i + 1000* e-3i =2941.0 

vNPV (2) = 200* e-i + 1000* e-2i + 1809* e-3i = 2918.3 

vNPV (3) = 0* e-i + 200* e-2i + 2812* e-3i = 2897.7 

To compute the DAV for the time interval [0,3], we apply 

Lemma 2 with i=0.02 and t=3. The factor, 

i/(1 - e-it) = 0.3434 

So, 

vDAV (1) = 0.3434*2941.0 = 1009.9 

vDAV (2) = 0.3434*2918.3 = 1002.1 

vDAV (3) = 0.3434*2897.7 = 995.1 

The above example illustrates the calculation of the DAV. 

It also shows that DAV is an alternative to average cost and is 

comparable to average cost. 

Approximating the DAV 

We now see how the DAV can be approximated. We will 
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use the result of this section in later sections. Let O(x) denote 

an arbitrary function f(x) with the property that limx→0 |f(x)/x| 

is finite. In particular O(i2) denotes a function that behaves 

like a constant times i2 when i is small. So if i is close to 0, 

the ratio of this function to i2 is a constant. 

We have the following result from Porteus [1], page 268, 

Theorem C.2 

Theorem 1: 

The DAV over the time interval [0,T] for a single 

expenditure x at time t, can be written as 

vDAV = {x+ix(T/2 - t)}/T + O(i2) 

Proof: 

Here vNPV = xe-it 

From Lemma 2, vDAV = ivNPV/(1 - e-iT ) = i(xe-it )/(1 - e-iT ) 

Let f(i) = (ie-it )/(1 - e-iT )                     (1) 

We know that f(i) has an expansion of the form a0 + a1i + 

O(i2), 

without yet knowing a0 and a1. Also, 

e-it = 1- it + (it)2 /2 + O(i3), 

From (1), we have 

f(i) (1 - e-iT ) = ie-it                           (2) 

We equate the expansions term by term on the LHS and 

RHS of (2) to find a0 and a1. 

From (2), the expansion of the LHS is, 

(a0 + a1i + O(i2))( iT - (iT)2 /2 + O(i3)) 

= i(a0T) + i2(a1T - a0T
2 /2) + O(i3)              (3) 

From (2), the RHS, ie-it, has the expansion 

ie-it = i – i2t + O(i3)                         (4) 

Equating (3) and (4) term by term, we have 

a0T = 1 

and 

a1T - a0T
2 /2 = -t 

This gives a0 = 1/T and a1 = (T /2 – t)/T and 

f(i) ≈ a0+ a1i 

= 1/T + i(T /2 – t)/T 

Therefore, the approximate DAV for a single expenditure x 

at time t, is given by 

vDAV = ivNPV/(1 - e-iT ) 

= i(xe-it )/(1 - e-iT ) 

= xf(i) 

≈ x/T + ix(T /2 – t)/T 

We will be making use of this result in the following 

sections. 

3. Minimizing the Discounted Average 

Cost under Continuous Compounding 

in the EOQ Model 

In the standard EOQ model we minimize the average cost 

over a cycle. In this section, instead of minimizing the 

average cost we would minimize the discounted average cost 

in the EOQ model. That is, we would find the order quantity 

which minimizes the discounted average cost under 

continuous compounding. Thus we are considering an EOQ 

model with a different cost function. 

Consider an EOQ model with the following costs. The cost 

of purchasing a product is c per unit. The setup cost for 

ordering the product from the supplier is K per order. This 

setup cost is incurred every time the product is ordered. It is 

independent of the actual quantity ordered. 

There is a holding cost, h, for holding the product in 

inventory. Typically a holding cost consists of two 

components. One is the direct cost and the other is the 

financing cost. The direct cost consists of costs for physical 

handling, insurance, refrigeration and warehouse rental. The 

financing cost consists of interest payments on capital 

borrowed to finance the inventory. In this model we assume 

that the inventory holding cost consists of only the direct cost 

and not the financing cost. This is a standard assumption in 

inventory models with discounting or inventory models 

which take into account the time value of money. See Zipkin 

[3], pages 34 and 63. 

The annual demand in the model is λ units. As in the EOQ 

model with average cost, in this model also we analyse costs 

over one cycle of the EOQ model, i.e. the time between 

receipt of two orders. This cycle repeats itself. We assume 

that interest is continuously compounded at the rate of i per 

unit time. 

We first consider the purchase cost c and the setup cost K. 

We next consider the holding cost. Consider one cycle of the 

EOQ model. Suppose the order quantity is Q. This is the 

decision variable which we have to find by minimizing the 

discounted average cost under continuous compounding. At 

the start of the cycle, we incur the cost K+cQ. 

We now use Theorem 1. The DAV over the time interval 

[0,T] for a single expenditure x at time t, can be written as 

vDAV ≈ {x+ix(T/2 - t)}/T 

Here x = K+cQ, T = Q/ λ and t=0. Here T is the time for 

one cycle of the EOQ model to get completed. The DAV over 

the time interval [0,T] for a single expenditure of K+cQ at 

time 0 is given by 

vDAV
s ≈ (K+cQ)λ/Q + i(K+cQ)/2 

Or vDAV
s ≈ Kλ/Q + cλ + iK/2 + icQ/2             (5) 

We have found the DAV over one cycle for the purchase 

cost and the setup cost. We next find the DAV over one cycle 

for the holding cost, vDAV
h. We do this by finding, vNPV

h, the 

NPV of the holding cost for one cycle under continuous 

compounding. We then use Lemma 2 to find vDAV
h. 

If we plot the inventory over time for the EOQ model, 

each cycle has a sawtooth pattern. The inventory rises to Q at 

the start of the cycle and depletes at a constant demand rate λ, 

till it becomes 0 at the end of the cycle. 

The equation for inventory, I(t) as a function of time t can 
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be written as, 

I(t) = Q – λt 

The NPV of the holding cost under continuous 

compounding, 

over one cycle of the EOQ model is, 

vNPV
h= ʃ0

ThI(t)e-itdt 

= ʃ0
Th(Q – λt)e-itdt                               (6) 

We have, 

ʃ0
Te-itdt = (1- e-iT )/i                                (7) 

Below, integrating by parts,we have 

ʃ0
T te-itdt = (-te-it)/i |0

T + 1/i ʃ0
Te-itd 

= 1/i2 - e-iT/ i2 – Te-iT /i                      (8) 

From (6), (7) and (8), we have 

vNPV
h = hQ(1- e-iT )/i - hλ/i2 + (hλe-iT)/ i2 + (hλTe-iT)/i 

= hQ(1- e-iT )/i - hλ/i[(1- e-iT )/i] + (hQe-iT)/I        (9) 

We now use Lemma 2 to find the DAV under continuous 

compounding of the holding cost over one cycle of the EOQ 

model. This is denoted by vDAV
h. We have from Lemma 2 

vDAV
h = ivNPV

h
 /(1 - e-iT ) 

Substituting (9) for vNPV
h, we have that vDAV

h is given by 

vDAV
h = hQ - hλ/i + + (hQe-iT)/(1 - e-iT )      (10) 

Combining (5) and (10), we have that the discounted 

average cost for the EOQ model under continuous 

compounding, vDAV, is given by 

vDAV
 = vDAV

s + vDAV
h 

= Kλ/Q + cλ + iK/2 + icQ/2 

+ hQ - hλ/i + (hQe-iT)/(1 - e-iT )                 (11) 

We have to find the value of Q which minimizes vDAV. This 

is different from the standard EOQ model where we 

minimize average cost. As Example 1 in Section 2 shows, the 

discounted average cost under continuous compounding is 

comparable to average cost. It is also an alternative criterion 

as compared to the average cost. 

We can write (11) as 

vDAV
 = Kλ/Q + icQ/2 

+ hQ/(1 - e-iT ) + cλ - hλ/i + iK/2                (12) 

In the EOQ model, we have that λ is the annual demand 

and Q is the order quantity in one cycle of the EOQ model. 

This cycle repeats itself. Typically, the order frequency in a 

year in the EOQ model, denoted by OF, would be around 15 

or 20. That is, the order frequency, OF = λ/Q would be 

around 15 to 20. So Q/λ = 1/OF would be small. We use this 

to get an approximation of one term in the equation (12) for 

vDAV
. 

We find an approximation for the term hQ/(1 - e-iT ), where 

T = Q/ λ. 

Let y = Q/ λ, with y small 

Then, 

hQ/(1 - e-iT ) = hλy /(1 - e-iy ) = a0 + a1y + O(y2) 

Here we need to find a0 and a1 

λhy = [a0 + a1y + O(y2) ][ 1 - e-iy] 

= [a0 + a1y + O(y2) ][iy - i2y2/2 + O(y3) ] 

Or, 

λhy = (a0i)y + [a1i - a0i
2/2] y2 + O(y3) 

Equating coefficients of y and y2 above, we have 

a0i = λh and a1i - a0i
2/2 = 0 

This gives, a0 = λh/i and a1 = λh/2 

So, 

hλy /(1 - e-iy ) ≈ a0+ a1y 

= λh/i + λhy/2                                 (13) 

Substituting (13) in (12) and using y = Q/λ, we have 

vDAV
 
≈ Kλ/Q + icQ/2 

+ λh/i + hQ/2 + ( cλ - hλ/i + iK/2 ) 

= Kλ/Q + icQ/2 

+ hQ/2 + ( cλ + iK/2 ) 

= Kλ/Q + Q/2(h + ic) + cλ + iK/2                  (14) 

We can now find the value of Q, which minimizes the 

Discounted Average Cost or vDAV. From (14), the optimal Q 

which minimizes vDAV is, 

Q* = sqrt (2Kλ/h+ic ) 

This is very similar to the optimal Q in the standard EOQ 

model with average cost. Thus considering either the average 

cost or the discounted average cost under continuous 

compounding in the EOQ model, gives similar results. 

4. The Standard EOQ Model for a 

Perishable Product 

In this section, we consider the standard EOQ model with 

average cost and a perishable product. Perishable products 

include, for example, food, medicines, certain chemicals and 

blood in blood banks. The discussion in this section follows 

Zipkin [3], pages 61-62. This forms the basis for the next 

section. In Section 5, we consider the EOQ model with 

discounted average cost under continuous compounding and 
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a perishable product. 

In the model with a perishable product, we assume that 

inventory decays at a constant rate over time, independent of 

its age. If δ is the decay rate and I(t) is the inventory at time t, 

then inventory deteriorates at rate δI(t) for all t. The defective 

product is detected immediately and discarded. 

We are considering the standard EOQ model with material 

cost c per unit and the setup cost per order of K. There is a 

holding cost h per unit per unit time which does not include the 

financing cost, as discussed in the previous section. Also λ is the 

annual demand. We consider one cycle of the EOQ model. This 

cycle repeats itself. Let Q be the inventory ordered at the start of 

a cycle. Here Q is the decision variable. Assuming time 0 is the 

beginning of a cycle, we have I(0) = Q 

Given our assumption of the decay rate, within a cycle, 

taking both spoilage and demand into account, we have 

I’(t) = - δI(t) – λ                          (15) 

This is a first order differential equation with initial 

condition, I(0) = Q. Its solution is ( see Zipkin [3] ), 

I(t) = Qe-δt - λ/δ( 1- e-δt )                     (16) 

That equation (16) is the solution of the differential 

equation (15) can be checked with direct substitution. 

The cycle time T, is the value of t with I(t) = 0. Instead of 

using Q, we use T as the decision variable. Given T, the order 

quantity Q is given by, 

Q = λ/δ( eδT - 1)                            (17) 

The above equation uses I(T) =0. 

The average inventory over a cycle, Iavg, is given by (see 

Zipkin [3] ) 

Iavg = 1/Tʃ0
TI(t)dt 

= λ/δ( eδT - δT -1)/ δT                   (18) 

The average cost in the EOQ model with perishable 

product, C(T), is given by the material cost, the setup cost 

and the holding cost. It is 

C(T) = (K+cQ)/T +hIavg 

Using (17) and (18), we have, 

C(T) = (K+ c λ/δ( eδT - 1))/T + hλ/δ( eδT - δT -1)/ δT  (19) 

There is no closed form expression for the optimal cycle 

time, T. We can solve equation (19), numerically for the 

optimal T. We can then use equation (17) to find the optimal 

Q, for the case of the EOQ model with average cost and a 

perishable product. 

5. The EOQ Model for a Perishable 

Product with Discounted Average Cost 

under Continuous Compounding 

In this section, we consider the EOQ model for a 

perishable product. We minimize the discounted average cost 

under continuous compounding, to find the optimal order 

quantity, Q. We next go about finding the discounted average 

cost for this case. 

We first consider the purchase cost c and the setup cost K. 

We next consider the holding cost. Consider one cycle of the 

EOQ model. Suppose the order quantity is Q. This is the 

decision variable which we have to find by minimizing the 

discounted average cost under continuous compounding. At 

the start of the cycle, we incur the cost K+cQ. 

We now use Theorem 1. The DAV over the time interval 

[0,T] for a single expenditure x at time t, can be written as 

vDAV ≈ {x+ix(T/2 - t)}/T 

Here x = K+cQ and t=0. Here T is the time for one cycle 

of the EOQ model to get completed. The DAV over the time 

interval [0,T] for a single expenditure of K+cQ at time 0 is 

given by 

vDAV
s ≈ (K+cQ)/T + i(K+cQ)/2 

Or vDAV
s ≈ K/T + cQ/T + iK/2 + icQ/2            (20) 

From (17) in Section 4, we have that in the case of the 

EOQ model with a perishable product, Q and T are related as 

Q = λ/δ( eδT - 1) 

Using the expansion of ex as 

ex = 1+ x + x2/2 + O(x3) 

and assuming δ small we have that, 

Q ≈ λ/δ(δT + δ2T2/2) 

= λ(T + δT2/2) 

= λT(1 + δT/2)                              (21) 

Substituting (21) in (20), we have 

vDAV
s ≈ K/T + c λ(1 + δT/2) + iK/2 

+ (ic/2) λT(1 + δT/2)                           (22) 

We have now found the discounted average cost, vDAV
s, 

resulting from the purchase cost and the setup cost. We next 

need to find the discounted average cost resulting from the 

holding cost, i.e. vDAV
h. This is similar to the analysis we did 

in Section 3 for the standard EOQ model. 

We do this by finding, vNPV
h, the NPV of the holding cost 

for one cycle under continuous compounding. We then use 

Lemma 2 to find vDAV
h. 

The equation for inventory, I(t) as a function of time t for 

the EOQ model with a perishable product is given by 

equation (16) in Section 4 as, 

I(t) = Qe-δt - λ/δ( 1- e-δt ) 

The NPV of the holding cost under continuous 

compounding, over one cycle of the EOQ model is, 
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vNPV
h= ʃ0

ThI(t)e-itdt                          (23) 

From the above equation, we have, 

I(t) e-it = (Q+ λ/δ)e-(δ+i)t - (λ/δ)e-it         (24) 

Substituting (24) in (23) and evaluating the integral, we 

have 

vNPV
h= (hQ/( δ +i))[ 1- e-(δ+i)T ] – (hλ/δ)[ (1- e-iT)/i ] 

+ (hλ/δ)[ (1- e-(δ+i)T )/( δ +i) ]                   (25) 

We now use Lemma 2 to find the discounted average cost 

under continuous compounding of the holding cost over one 

cycle of the EOQ model. This is denoted by vDAV
h. We have 

from Lemma 2 

vDAV
h = ivNPV

h
 /(1 - e-iT ) 

Using (25), we have, 

vDAV
h = (hQi/( δ +i))[ (1- e-(δ+i)T )/ (1 - e-iT ) ] 

hλ/δ 

+ ((hλi)/δ( δ +i))[ (1- e-(δ+i)T )/ (1 - e-iT ) ]         (26) 

Using the expansion of e-x, for x small as 

e-x = 1- x + x2/2 + O(x3) 

we have 

e-x ≈ x - x2/2                                     (27) 

We now use (27) in the first term of (26), as δ and i are 

small. The first term of (26) can be rewritten as, 

(hQi/( δ +i))[ (1- e-(δ+i)T )/ (1 - e-iT ) ] 

≈ (hQi/( δ +i))[ ( (δ +i)T – ((δ +i)T)2/2 ) / (iT – (iT)2/2 ) ] 

= hQ[ ( 1- (δ +i)T/2 ) / (1- iT/2 ) ]                (28) 

Similarly, we can simplify the third term of (26). 

We now substitute (28) in (26) to find the expression for 

vDAV
h. We then have that, 

vDAV
h ≈ hQ[ ( 1- (δ +i)T/2 ) / (1- iT/2 ) ] 

- hλ/δ 

+ hλ/δ[ ( 1- (δ +i)T/2 ) / (1- iT/2)]               (29) 

Using the fact that δ and i are small, we have, 

( 1- (δ +i)T/2 ) / (1- iT/2 ) ≈ 1                   (30) 

Using (30) in (29), we have, 

vDAV
h ≈ hQ - hλ/δ + hλ/δ 

= hQ 

=hλT(1 + δT/2)                           (31) 

In equation (31), we have used equation (21) above. 

Combining (22) and (31), we have that the discounted 

average cost under continuous compounding for the EOQ 

model with a perishable product, vDAV, is given by 

vDAV
 = vDAV

s + vDAV
h 

≈K/T + cλ(1 + δT/2) + iK/2 

+ (ic/2) λT(1 + δT/2) 

+ hλT(1 + δT/2)                                (32) 

Rearranging terms of equation (32), we have, 

vDAV ≈ K/T + (cλδ/2 +λic/2 + hλ)T 

+ (λicδ/4 + hλδ/2)T2 

+ (cλ + iK/2)                                       (33) 

We can find the value of T which minimizes vDAV. Once we 

have the optimal value of T, we can find Q using equation (17). 

Let a1 = cλδ/2 +λic/2 + hλ 

and 

a2 = λicδ/4 + hλδ/2 

Also let the constant L = cλ + iK/2 

Then from equation (33), we have 

vDAV ≈ K/T + a1T + a2T
2 + L                  (34) 

Let g(T) = K/T + a1T + a2T
2 + L 

Then, the derivative, 

g’(T) = -K/T2 + a1 + 2a2T = 0                (35) 

and the second derivative is 

g’’(T) = 2K/T3 + 2a2 

which is positive. 

So the value of T which solves equation (35), i.e. which 

solves the equation, 

a1 + 2a2T = K/T2                                   (36) 

is a point of minima. 

We can numerically find the value of T, which solves 

equation (36). We have thus found the value of T which 

minimizes the discounted average cost under continuous 

compounding in the EOQ model with a perishable product. 

Once we have T, we can find the optimal order quantity Q 

for this criterion, using equation (17). In the next section we 

consider a numerical example for the EOQ model with a 

perishable product. 

6. A Numerical Example for the EOQ 

model with a Perishable Product 

For a specific numerical example of the EOQ model with a 
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perishable product, we compare 2 order quantities. The first 

order quantity is for the standard EOQ model with a 

perishable product and minimizes average cost. The second 

order quantity minimizes the discounted average cost under 

continuous compounding in the EOQ model with a 

perishable product. 

We consider the following numerical example. We have, 

λ= 1500 units/year, h = $8/unit/year, K = $25 per order 

c = $25 per unit, δ = i = 0.02 

We first consider the standard EOQ model for a perishable 

product, discussed in Section 4. To find the order quantity, 

we minimize C(T) in equation (19). Once we have found the 

optimal T, we can find Q using equation (17). 

To find the optimal T in equation (19), we use the fact that 

δ is small. We expand eδt using the expansion for ex and using 

δ is small. This gives, 

eδT - 1 ≈ δT + (δT)2/2 

eδT - δT -1 ≈ (δT)2/2 

We substitute these in equation (19) and differentiate to 

find the best T. Once we have T, we find Q using equation 

(17). Here again we use that δ is small and expand eδt. 

Using the data in the example, this gives T = 0.062 years 

and Q* = 93.93 for the standard EOQ model for a perishable 

product. 

We next find the optimal Q for the EOQ model for a 

perishable product for the case of the discounted average cost 

with continuous compounding. The optimal Q for this 

criterion has been discussed in the previous section. We first 

find T and then use equation (17) to find Q. 

To find the optimal T, we use equation (36), i.e. 

a1 + 2a2T = K/T2 

with 

a1 = cλδ/2 +λic/2 + hλ 

and 

a2 = λicδ/4 + hλδ/2 

Using the data in the example, we have a1 = 12750 and a2 

= 135. 

Solving equation (36) in Excel, we have T = 0.0442 years. 

Using equation (17) this gives Q* = 66.39. 

The results of the numerical example are summarized in 

Table 1 below. 

Table 2. Results for the EOQ model for a perishable product. 

 Q* 

Minimize average cost 93.9 

Minimize discounted average cost under continuous compounding 66.3 

Thus we find that in this numerical example, minimizing 

discounted average cost under continuous compounding 

gives a lower order quantity than in the case of the standard 

EOQ model, which minimizes average cost. 

7. Conclusion 

The EOQ model minimizes average cost and does not take 

into account the time value of money. However, the 

discounted average cost under continuous compounding 

takes into account the time value of money. Just like the 

average cost is a cost rate, the discounted average cost is also 

a cost rate. We find the order quantity in the EOQ model, for 

the alternative criteria of minimizing discounted average cost 

under continuous compounding. 

For the EOQ model with a regular product, minimizing the 

discounted average cost under continuous compounding, 

results in an order quantity which is very similar to the order 

quantity resulting from minimizing the EOQ model with 

average cost. 

For the EOQ model with a perishable product, a closed 

form solution for the optimal order quantity is not 

available for the standard objective of average cost. For 

the EOQ model with a perishable product and the 

objective of minimizing discounted average cost, we were 

not able to obtain a closed form solution. However the 

optimal order quantity can be easily found numerically. 

We considered a specific numerical example for the EOQ 

model with a perishable product. Here we have two 

objectives, the average cost and the discounted average 

cost. We found that the order quantity while minimizing 

discounted average cost under continuous compounding 

was lower. It remains to be seen, if this numerical result 

holds more generally. 
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